

VECTEUR HYDROGÈNE : BONNE OU MAUVAISE SOLUTION ?

Université negaWatt 2019

Simon Métivier

Usages actuels de l'hydrogène

Les usages actuels de l'hydrogène en France

Secteur industriel	kt/a	TWhPCS	Origine
Raffinage pétrolier	544	21,4	Majoritairement co-produit, mais
Natimage petroner	J44	21,4	commence a être déficitaire
Ammoniac et engrais	240	9,5	Vaporéformage du gaz naturel
Industrie chimique	92	3,6	Coproduit/vaporeformage du gaz naturel
Métallurgie	9,2	0,4	Vaporéformage du méthane
Divers (verreries, alimentaire)	36,8	1,4	Vaporéformage du méthane
	922	36,3	

Source: Afhypac

Usages futurs

Usage matière

- Production acier primaire par réduction directe H2, au lieu de Coke de charbon
 - une solution possible parmi d'autres [1] plusieurs aciéristes se sont engagés sur des démonstrateurs [2]
 - Si 100% acier primaire français en 2050 avec H2 : besoin de 20 TWhPCS [3]
- Chimie (en particulier CxHy)
- Mobilité H2
- Stockage et transport d'énergie

[1] www.ulcos.org

[2] https://www.ft.com/content/f2b85c0c-ed2f-11e6-ba01-119a44939bb6 [3] ADEME/GRTgaz/GRDF/Solagro/AEC, « Un mix 100% gaz renouvelable en France en 2050? », 2018

Comment produire l'hydrogène

Production d'hydrogène

Vaporeformage hydrocarbure (méthane en France)

$$CH_4 + H_2O => CO + 3 H_2$$

 $CO + H_2O => CO_2 + H_2$

• Electrolyse de l'eau

$$H_2O => \frac{1}{2}O_2 + H_2$$

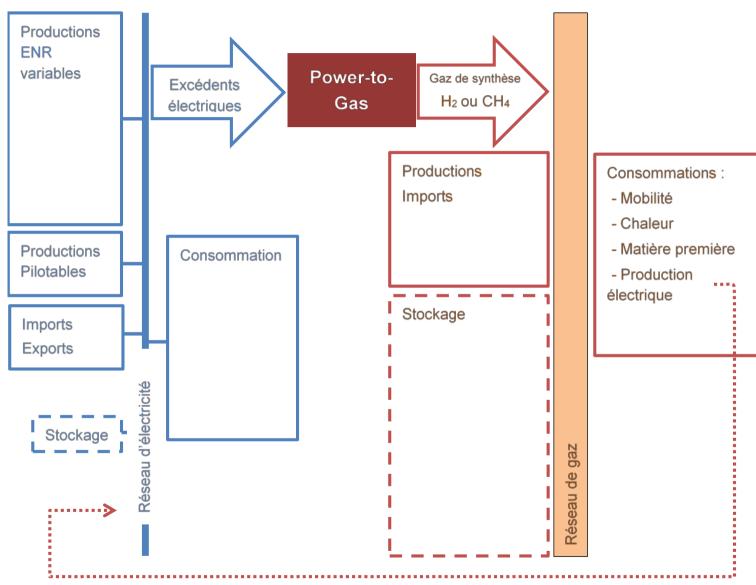
• Electrolyse de saumure (production de Chlore)

$$NaCl + H_2O => \frac{1}{2} Cl_2 + NaOH + \frac{1}{2} H_2$$
 (aussi avec KOH)

Pyrogazéification (Charbon, bois...)

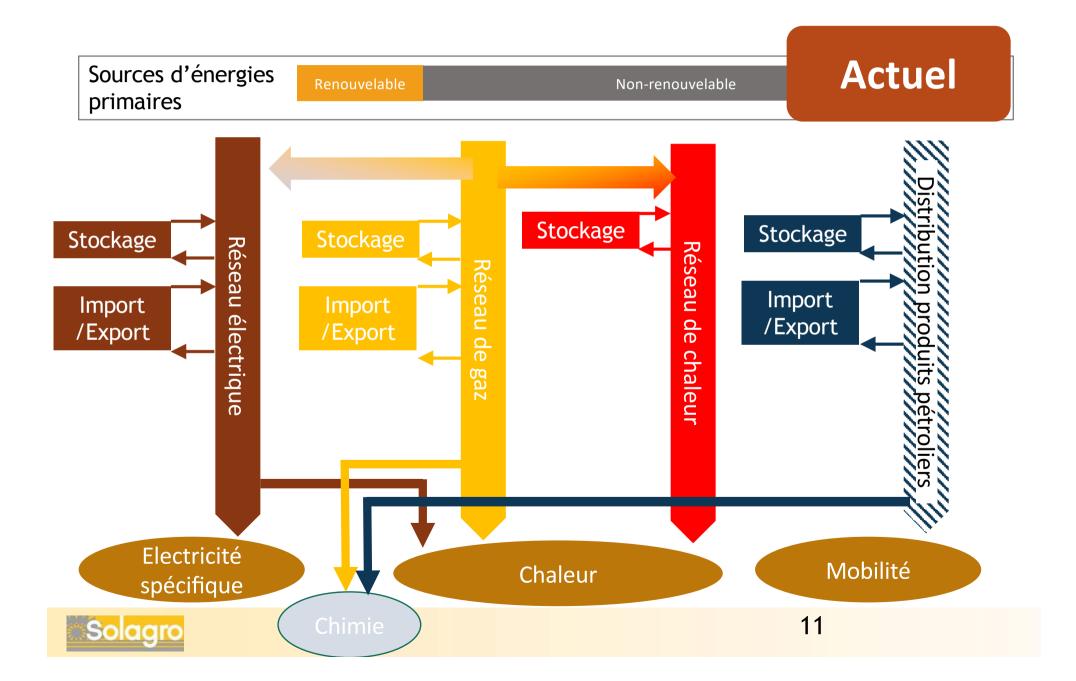
$$CxHyOz => H_2 + CO + CH_4 + CO_2$$

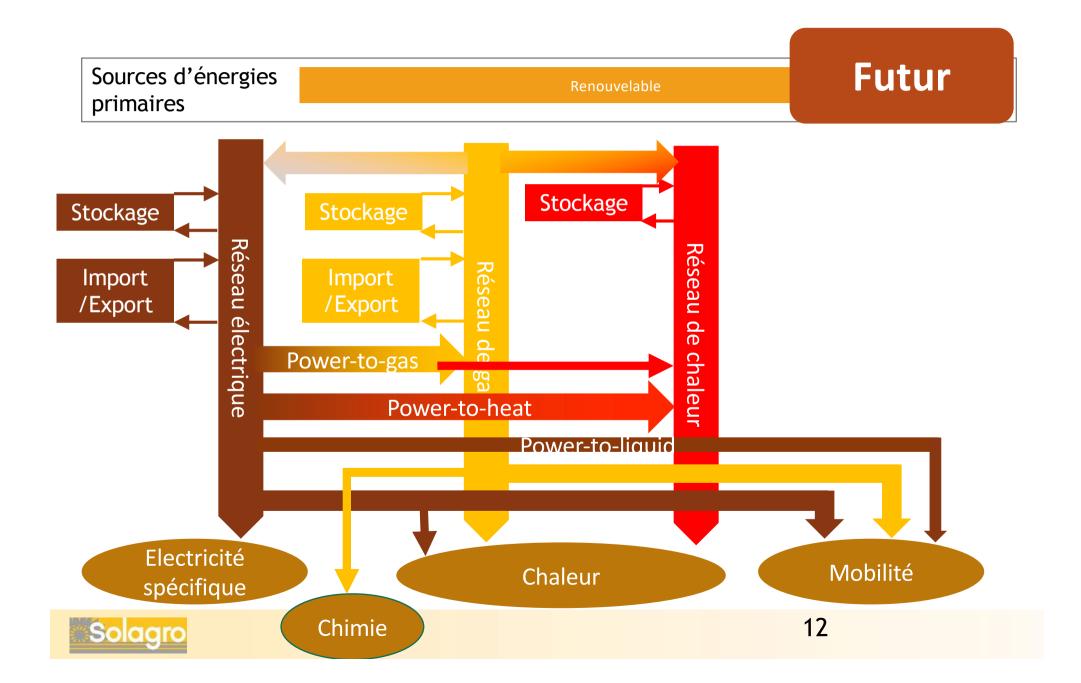
Le power-to-gas

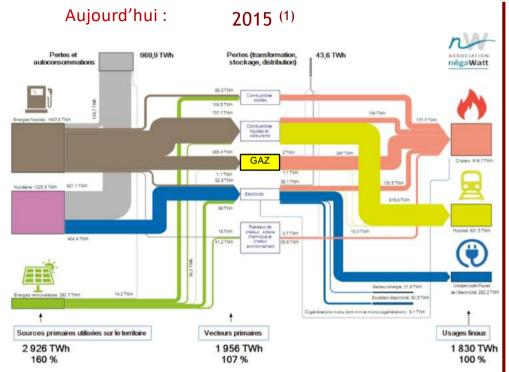


Qu'est-ce que le power-to-gas?

- Système permettant la conversion d'énergie électrique en énergie chimique sous forme gazeuse
- Les gaz produits sont typiquement de l'hydrogène (H₂) voire du méthane (CH₄)
- Ce système permet ainsi de relier le réseau électrique au réseau gazier
- (!) Ce n'est pas une nouvelle source d'énergie primaire !

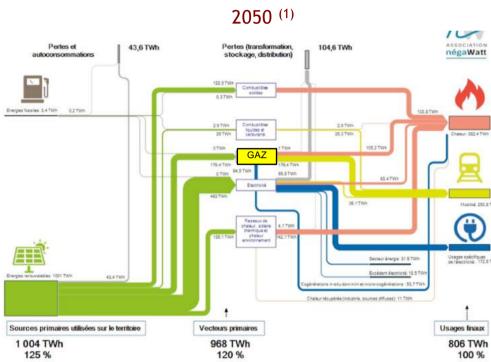

Le power-to-gas


Source: ADEME/GRTgaz/GrDF/E&E consultant/Solagro/Hespul, 2014


Système énergétique actuel

Système énergétique 100% ENR

La place du gaz aujourd'hui et ... demain



Aujourd'hui

450-500 TWh

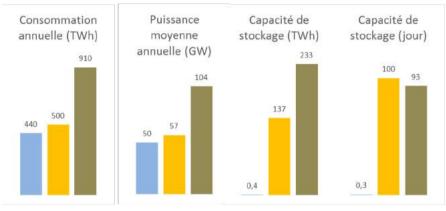
Source : 100% importé

Utilisation: 100% chaleur

Demain

- 250-350 TWh
- Source: 100% made in France
- Utilisation:
 - 30 (2) à 70% (1) Transport
 - 30 à 70% Chaleur

Source:


(1) https://negawatt.org/scenario/sankeys/2050-simplifie

(2) Scénario énergie-cliùat ADEME 2035-2050, 2017, http://www.ademe.fr/actualisation-scenario-energie-climat-ademe-2035-2050

Les possibilités du Power-to-gas

- Participer à la régulation du réseaux électrique
- Valorisation d'électricité renouvelable excédentaire pour
 - d'autres usages (Mobilité, Chimie...)
 - à un autre moment (capacité de stockage sur réseau de gaz > 300 fois celle du réseau électrique en France)
 - à un autre lieu (Utilisation du réseau de transport de gaz)

Consommation énergétique et capacité de stockage en France (2012) (1)

Gaz

■ Produits pétroliers


■ Electricité

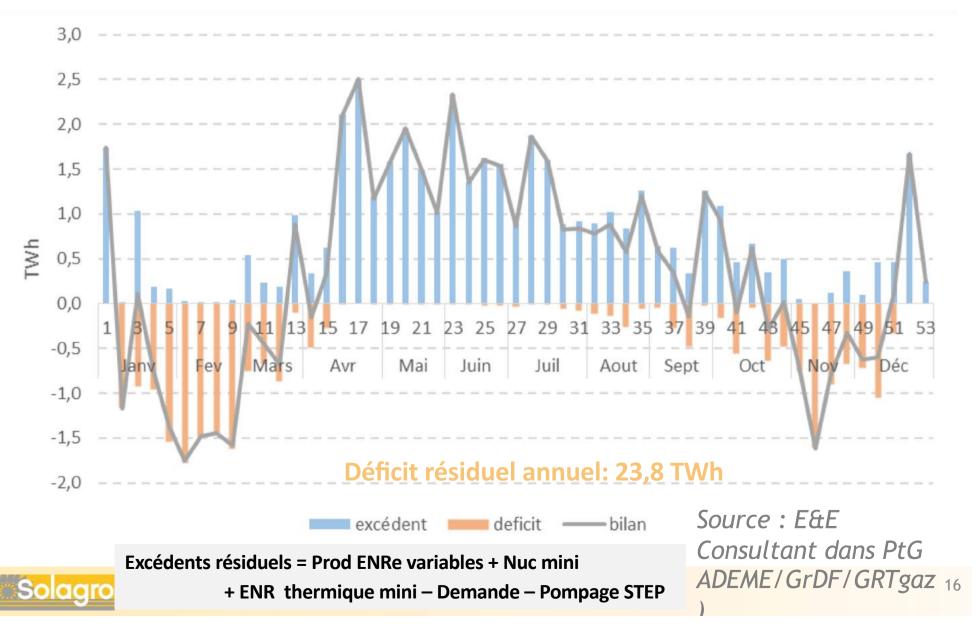
Morrow do Benegor

Tarrette

Planes pat N de ORT (se
Planes pat S de ORT (se
Planes out de sonie de
Planes out de
Pl

Gas transport is the cheapest and most efficient form of energy transport

Pénétration des ENR variables sur le réseau électrique


 Forte pénétration de l'éolien et du photovoltaïque => Fortes variabilités de la production => difficultés d'assurer l'adéquation avec la consommation

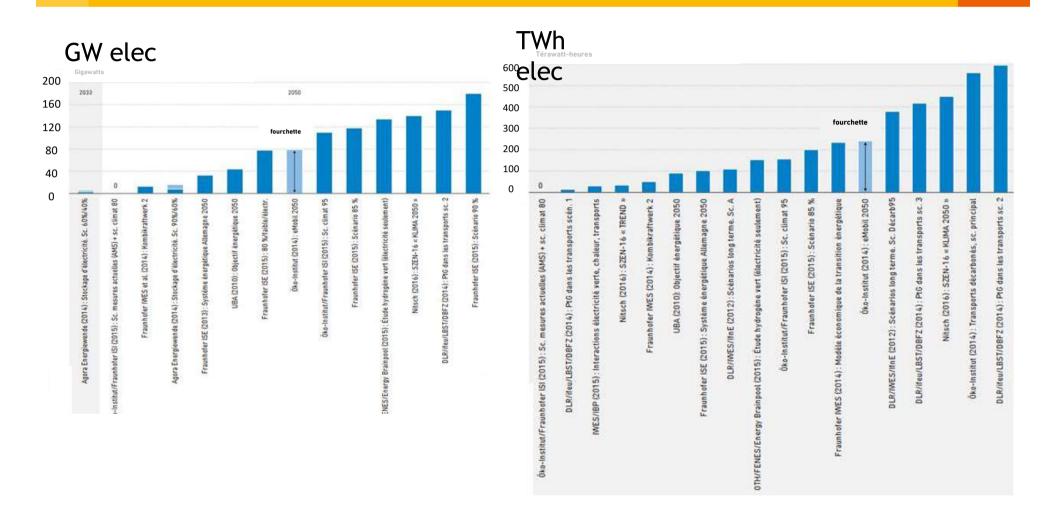
Solutions	Remarques
Flexibiliser la demande (ex : chauffe-eau, gros électroménager, recharge véhicules électriques)	Ajustement quelques heures
Imports / Exports	Limité par le fait que les conditions météos /climatiques des pays voisins ne sont pas complétement décolérées
Stocker temporairement	Quelques secondes à quelques jours (sauf PtG avec ré-électrification)
Limitation de production (Curtailement)	Pertes de production d'ENR
Convertir vers d'autres vecteurs	Valorise les surplus mais ne participa pas à combler les déficits de production (sauf réélectrification)

Excédents et déficits estimés dans le scénario de référence en ADEME 2050

Excédent résiduel annuel : 44,5 TWh

Quelle place pour le power-to-gas en Europe?

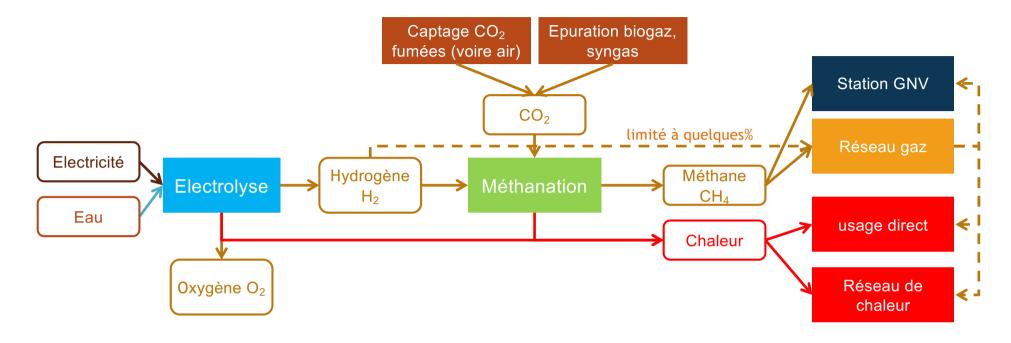
Revue de scénarios (24) (ADEME/GRTgaz/GrDF/E&E consultant/Solagro/Hespul,


2014)

•	Déterminant	s di	u recours	ลน	PtG '	•
	Determinant	J U	u i CCOui 3	au	1 (0)	•

- Recours au PtG si:
 - périmètre large, scénarios globaux yc secteur du transport
 - des objectifs ambitieux (100% ENRe, -95%GES...), Power-to-Gas apparait sur long terme, au delà de 2030-2040
- Non-recours ou moindre recours au PtG si fortes ressources en :
 - Hydroélectricité (moins de besoin d'équilibrage)
 - Biomasse, dans une moindre mesure (Equilibrage réseau électrique + carburant pour transport)
- H₂ ou CH₄ ?
 - Pas forcément tranché, rester ouvert aux évolutions technologiques
 - Plusieurs choisissent CH₄ uniquement pour éviter saut technologique
- Méthanation (CH₄) apparait récemment (2009-2011)

Quelle place en Allemagne?


OFATE (French and German Office for Energy Transition) study (11/2016)

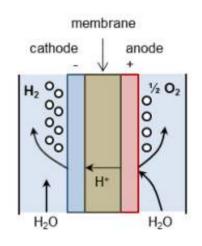
Les briques technologiques

Les briques technologiques

		H2	CH4
Masse volumique	kg/Nm ³	0,09	0,72
Pouvoir calorifique supérieur	kWhPCS/Nm ³	3,54	11,04
Pouvoir calorifique inférieur	kWhPCS/Nm ³	3	9,94
Limite du domaine de détonabilité	%v	13%-64%	6%-14%
Energie minimale d'inflamation	mJ	0,02	0,29

Electrolyse

Electrolyse - Principe


→ Réaction :

$$H_2O + \text{énergie} => \frac{1}{2}O_2 + H_2$$

Principe

électrodes en métal inerte électrolyte (graphite, platine...) ANODE CATHODE

Cellule (ex: PEM)

Empilement de cellules (Stack)

Sources: Larousse, Eifer, etogas

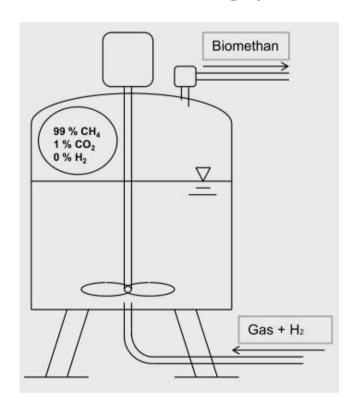
Electrolyse

		Alcalin		PEM		SOEC	
		Actuel	2030+	Actuel	2030+	Actuel	2030+
Rendement de conversion Elec -> H _{2 (PCS)}	%	70%-75%	79%	70%-78%	84%		100%
Rendement de conversion Elec + Chaleur -> H _{2 (PCS)}	%	70%-75%	79%	70%-78%	84%		85%
CAPEX	€/kW	600-1000	400-600	800-1500	700-800		1000
OPEX	%САРЕХ/а	5%	5%	5%	5%		3%
Pression de fonctionnement	Bar	15-30	60	60	100		30
Avantages		Technologie mature Prix		Meilleurs rendement Rapidité de réponse Grande plage de fonctionnement Compacité		Rendement éle	vé
Inconvénients		Temps de réponse plus lent Utilisation produit corrosif et dangereux (NaOH)		Durée de vie plus limité (en amélioration) Technologie récente Prix élevé Recours à métaux rares (platine Iridium)		Loin du stade commercial Durée de vie Peu adapté au fonctionnement intermittent	

Sources: Solagro et Etude ADEME/GRDF/GRTGAZ 2014

Méthanation

Méthanation - Principe


→ Réaction :

$$4H_2 + CO_2 => CH_4 + 2H_2O + chaleur$$

Réacteur catalytique

Réacteur biologique

Sources: etogas, Microbenergy

Electrolyse

		Catalytique		Biologique	
		Actuel	2030+	Actuel	2030+
Rendement énergétique (gaz synthèse/H2) sur PCS	%	78%	78%	78%	78%
CAPEX	€/kWCH4	1000 - 4000	400-1000	1000 - 2500	400 - 1000
	€/kWe (1)	550 - 2200	220 - 550	550 - 1350	220 - 550
OPEX	%CAPEX/a	3 – 7%	3 – 7%	4 – 9%	4 – 9%
Pression de fonctionnement	Bar	4 - 10		6 - 10	15
Avantages		 Technologie basée sur technologie mature de méthanation CO (60 ans) Récupération de chaleur à haute température 		 insensible au trac technologie simpl pas de catalyseur Flexibilité 	e
Inconvénients		 sensible aux impuretés (H2S<10ppm) Selon technologie : flexibilité (contrôle température, plage de fonctionnement) 		 Chaleur coproduit température Gestion intrant / sorganique) 	

(1) Hypothèse rendement électrolyseur : 70%

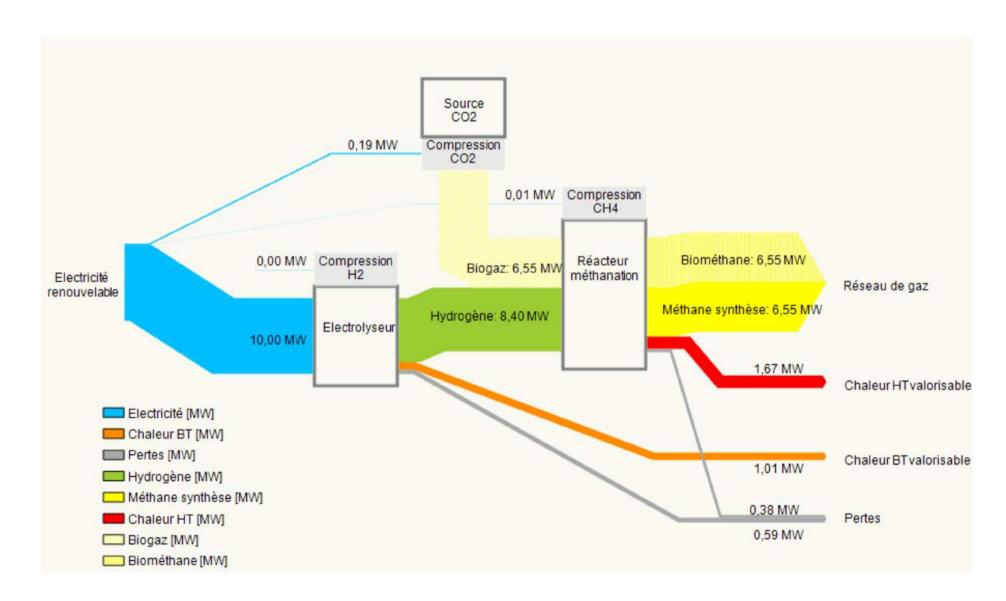
Sources: Solagro et Etude ADEME/GRDF/GRTGAZ 2014

Source de CO2

Sources de CO₂

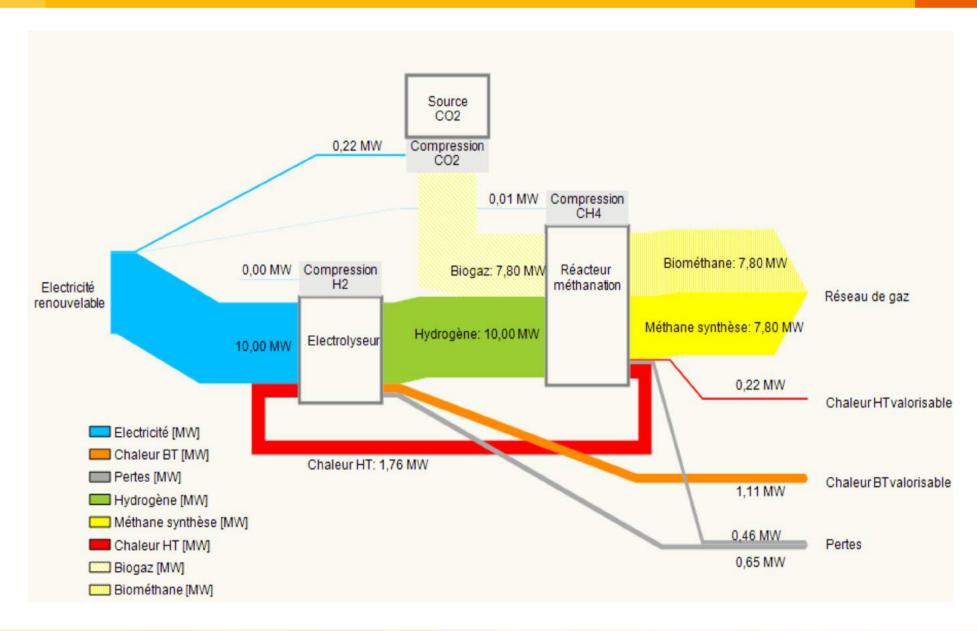
	Avantages	Inconvénients	Coût (€/MWh _{CH4})
Air	Mise en œuvre n'importe où	Très énergivore Très cher	15-20
Combustion (Procédé, Chaufferie)		Energivore Cher	
Combustion (centrale électrique)		Energivore Cher Pas/peu en service lors des excédents d'électricité	1-10
Méthanisation, Gazéification	Nécessite pas de concentration de CO ₂ Renouvelable		0

Source : ADEME/GRDF/GRTGAZ 2014

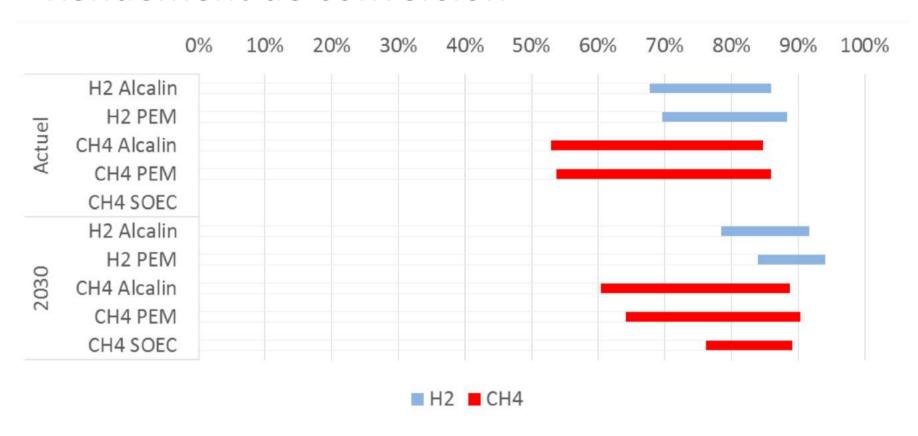


Source type	Débit de CO ₂ émis (tCO2/h)	Capacité électrolyseur équivalent (MW)
Centrale charbon 600 MW, rendement 35%PCI	585	6000
Centrale CCGT Gaz 400MW , rendement PCI 57%	142	1500
Petite Chaudière procédé ou Chaufferie biomasse 2,5MW, rendement PCI 90%	1,0	10
Méthaniseur, équivalent cogénérateur 0,7 MWe (rend élec 35% PCI)	0,4	4
Cimenterie 2000 t/j clinker	73	800
Haut fourneau 2Mtacier/an	440	4500

Assemblage

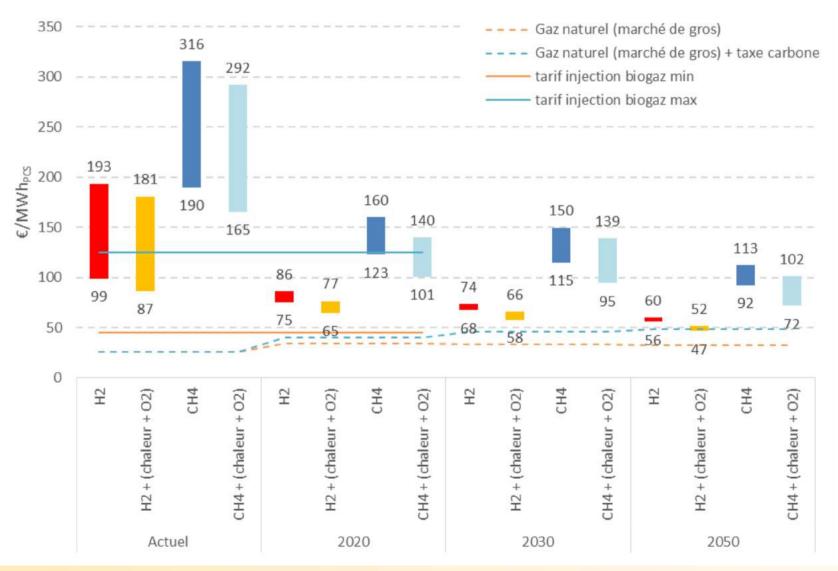


Bilan énergie – Electrolyseur PEM + Méthanation Catalytique



Bilan énergie – Electrolyseur <u>SOEC</u> + Méthanation Catalytique + intégration thermique

Rendement de conversion


- Le bas de la fourchette prend en compte uniquement en sortie l'énergie (PCS) du gaz de synthèse
- Le haut de la fourchette prend en compte l'énergie du gaz + la chaleur valorisable

Source: PtG ADEME/GrDF/G RTgaz)

Coûts de production et prix de valorisations

Aucun coût d'utilisation du réseau n'est pris en compte

Mobilité

Véhicule hydrogène

- Véhicule avec moteur électrique
- Avec une pile à combustible
- Stockage H₂ compressé entre 350 à 700 bar
- Une batterie (en particulier pour pointes de puissance et récupération d'énergie au freinage)

Intérêt du véhicule hydrogène

- Comme le véhicule électrique (électricité renouvelable) :
 - Pas d'émissions de CO₂, CO, NOx...
 - Faible émissions de particules : pas de particules dans les gaz échappements (seulement eau et air/azote), mais il reste les émissions de particules liées à l'usure des pneus et des freins
 - Faible bruit
- Intérêt par rapport au simple véhicule électrique :
 - Autonomie
 - Rapidité de recharge

Mais des freins à une solution massive

• Infrastructure de distribution coûteuse et/ou pas compatibles avec les besoins de flexibilité inter-saisonnier du système électrique

	Production décentralisée	Production centralisée
Description	stations équipées d'électrolyseurs, de compresseurs et de stockages 500 à 700 bars	Unités d'électrolyse centralisée avec réseau de distribution et stockages centralisés
Avantage	Limite la création de nouvelles infrastructures	Peu offrir une flexibilité inter- saisonnière
Inconvénient	Ajoute une consommation électrique journalière, avec faible flexibilité pour réseau électrique	Coût important (réseau, stockage souterrain)

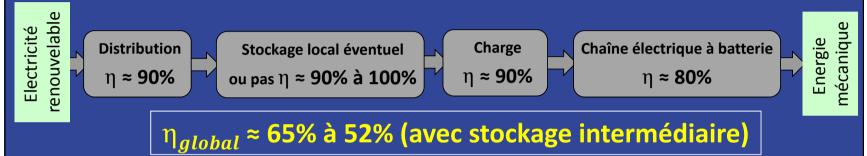
Mais des freins à une solution massive

- Maturité
 - Pré-séries industrielles
 - fin 2017, moins de 10 000 voitures dans le monde [1]
 - Premiers bus en France 2019
- Coût actuellement élevé des solutions de mobilité (actuellement entre 50 et 100% plus chère que solution thermique en cout total de possession) [2],[3]
- Gestion du risque H₂
- Performance énergétique faible comparée au véhicule électrique batterie
- Ressources matières : Platine pour pile à combustible, potentiellement critique [4]

^[4] BRGM, Fiche de synthèse sur la criticité des métaux - Le platine, 2 novembre 2017

^[1] B.Multon https://github.com/VGuichon/Hackathon-CampOSV-mars-2018/blob/master/B%20Multon%20Conf%2015-3-2018%20CampOSV.pdf

^[2] Expérimentation Hyway 2014-2017 - https://www.tenerrdis.fr/fr/projets/hyway/?cn-reloaded=1


^[3] Element Energy, Afhypac, Mobilité Hydrogène France - L'opportunité bus électriques à hydrogène - 2018

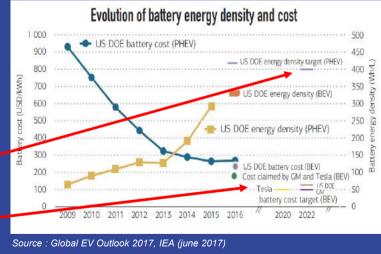
Véhicules électriques : à batterie (BEV) ou à pile à combustible (FVEV) ?

Alimentation en électricité renouvelable à faibles impacts

1- BEV (Battery Electric Vehicles)

En France : part énergie environ 2 €/km

Batterie (pour 400 km): 40 à 50 kWh


8 à 10 k€ et 270 à 330 kg

Evolutions (lithium-ion)

(densité et prix) de 2009 à 2016:

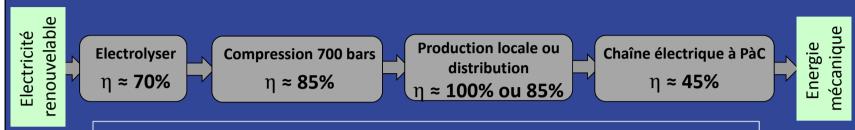
Vers 200 Wh/kg et 400 Wh/L

et 100 \$/kWh

CampOSV - InOut Mobilités numériques, Rennes 15 mars 2018

B. Multon, ENS Rennes, SATIE - CNRS

13



Véhicules électriques : à batterie ou à pile à combustible ?

2- FCEV (Fuel Cell Electric Vehicles)

 $\eta_{global} \approx 23\%$ à 27% (production centralisée ou locale)

=> consommation 2 à 3 fois plus élevée que celle d'un BEV

En France : part énergie environ 5 à 10 €/km => 2,5 à 5 fois plus cher

Autonomie et performances massiques peu supérieures à celles des BEV :

Mirai: pile (230 kg) + réservoir H2 (92 kg) + batterie NiMH (30 kg)

=> 350 kg pour 5kg d'H2 (500 km)

Tesla S: batterie 75 kWh 540 kg (485 km)

CampOSV - InOut Mobilités numériques, Rennes 15 mars 2018

B. Multon, ENS Rennes, SATIE - CNRS

14

Source: Bernard Multon https://github.com/VGuichon/Hackathon-CampOSV-mars-2018/blob/master/B%20Multon%20Conf%2015-3-2018%20CampOSV.pdf

H2 risques accidentels

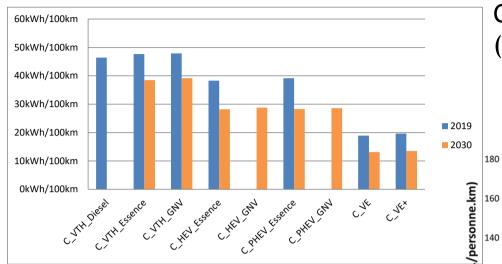
• Par rapport au gaz naturel ou méthane :

- Une propension à fuir plus importante : la molécule d'hydrogène est de petite taille et de faible viscosité, ce qui facilite les fuites ;
- Une probabilité d'inflammation plus élevée :
 - énergie minimale d'inflammation faible (15 fois plus faible que gaz naturel), qui peut être apportée par une flamme ou une étincelle
 - Domaine inflammable dans l'air ambiant est de 4 à 75%v;
- Une probabilité d'explosion à l'air libre plus faible compte tenu d'une forte diffusivité qui réduit le risque de formation d'un nuage explosif en milieu non confiné ;
- Une combustion plus rapide, favorisant le phénomène de déflagration ;
- Une flamme peu visible et peu radiative.

Sources: ADEME, « L'hydrogène dans la transition énergétique », 2018 Bricault&all, « L'hydrogène décarboné », ed Lavoisier, 2019

Solution mobilité GNV + Electricité

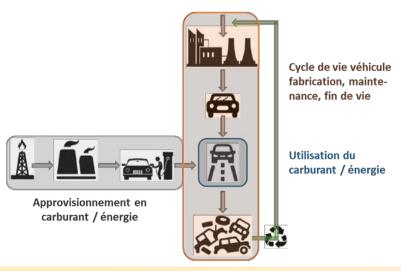
- Electricité (batterie) réservée aux petits véhicules urbains (quasi zéro émission)
- BioGNV pour les poids lourds et la longue distance
 - Technologie mature (Millions de véhicules en service)
 - Faible NOx, Particules quasi nulles
 - Bon bilan GES (BioGNV)
 - Déploiement des Infrastructure d'avitaillement
- Hybridation possible

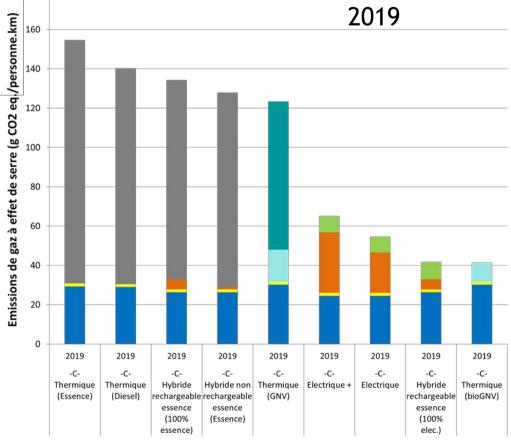


Résumé sur la place de l'H2

- Usages actuels (sauf pétrochimie et raffinage, moins d'engrais de synthèse)
- Nouvel usage matière : production d'acier primaire décarboné
- H₂ Vecteur énergétique final : Faible
 - Mobilité H₂ limité
 - Pas/peu d'infrastructure de distribution et stockage (pourrait accéder aux infra méthane, mais probablement moins de 20%, en mélange avec CH₄)
- Vecteur énergétique intermédiaire pour production CH₄
 - Flexibilité système électrique
 - Gaz renouvelable compatible avec :
 - Infrastructure gazière actuelle
 - Mobilité longue distance (Moteur GNV)
- Moyen de production : Vaporéformage => Electrolyse

ACV Mobilité – Voiture segment C (IFPEN 2019)


Consommation (kWh/100 km)


Cycle de vie véhicule

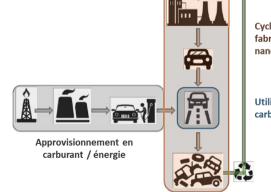
Cycle de vie batterie

"Puits à la roue" (electricité, FR)

Emissions ACV (cylde de vie du véhicule + carburant (puit à la roue)

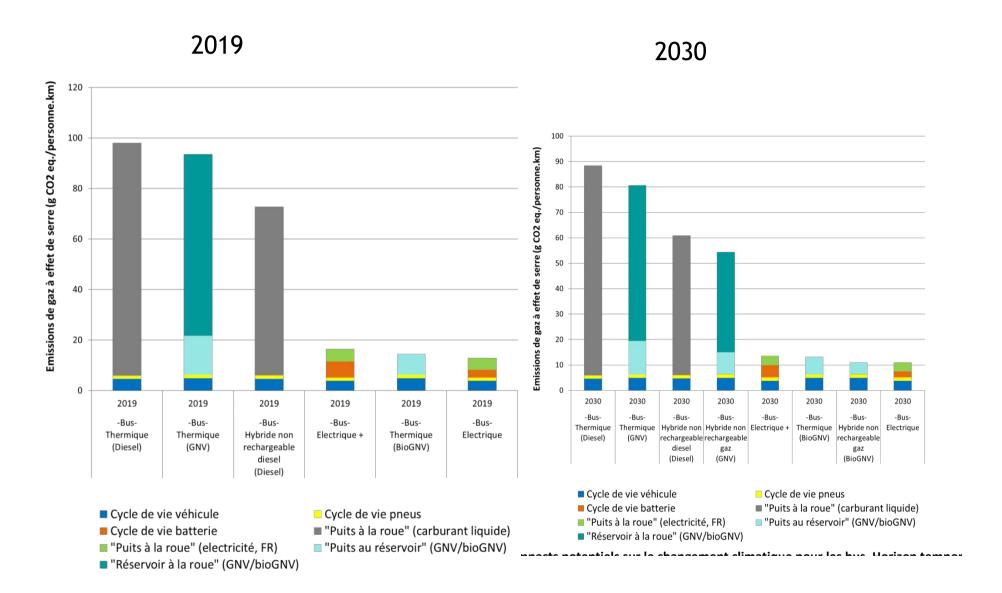
Cycle de vie pneus


"Puits à la roue" (carburant liquide)


"Puits au réservoir" (GNV/bioGNV)

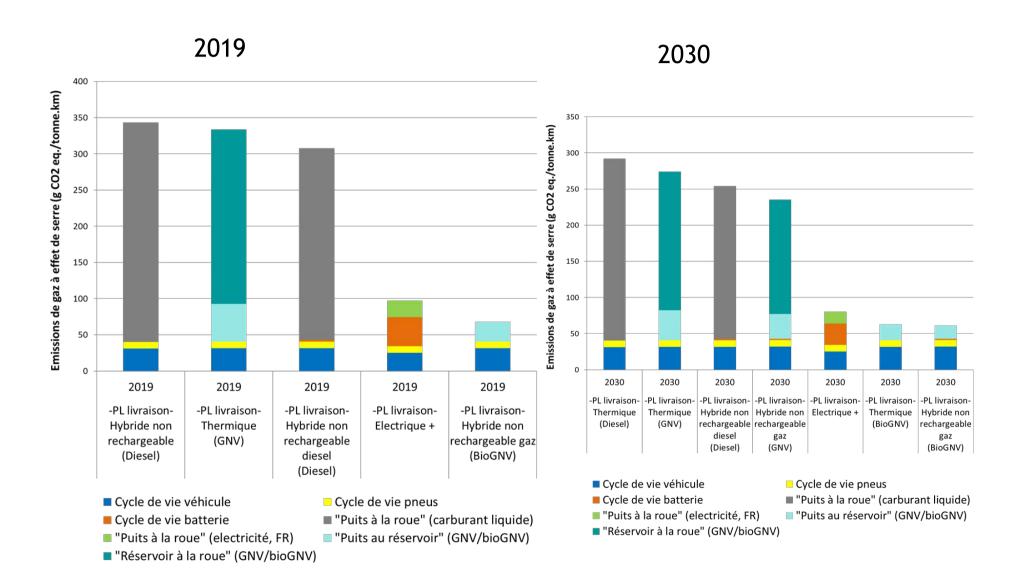
ACV Mobilité – Voiture segment C (IFPEN 2019)

Emissions ACV (cylde de vie du véhicule + carburant (puit à la roue)



fabrication, maintenance, fin de vie

Utilisation du carburant / énergie



ACV Mobilité – BUS (IFPEN 2019)

ACV Mobilité – PL12t (IFPEN 2019)

